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THEORY OF INDUCED SPATIAL INCOHERENCE

I. INTRODUCTION

High gain laser fusion requires a highly symmetnc pellet implosion. with ablation pressure
nonuniformities of no more than a few percent around the sphencal surface.' , For directly-dnven pel-
lets, this symmetry must be achieved by the combination of nearly uniform laser illumination and
thermal diffusion in the ablating plasma. Thermal diffusion alone is ineffective in reducing lower
spatial frequency nonumformities to cceptable levels, especially at the short optical wavelengths
required for good laser-target coupling.'

Theoretical studies have shown that acceptable sphencal illumination uniformity can be achieved
by overlapping a linited number (a2O) of focused beams, provided that each individual beam profile
is smooth and controllable."' Earlier efforts to obtain such profiles, however, have been frustrated
by the inherent imperfections in high-power multistage laser systems. The cumulative effect of
numerous small amplitude and phase aberrations (both linear and nonlinear) introduced by each opti-
cal element of a mulustage laser produces large random aberrations in the output beam. and hence
large random intensity nonuniforimues at the target surface. Efforts to control laser aberrations,
using ultra high quality optics and extensive beam relaying, have not been completely successful.
especiadly at high energies and shorter laser wavelengths. ' " Nonlinear optical techniques, such as
phase conjugation' 2 and Raman beam cleanup.' 3- ' are effective at generating beams capable of pro-
ducing nearly diffracuon-linuted focal spots. However. these techniques are not generally effective
in elimnaung large residual intensity nonuniformities in the quasi near-field of the laser.' 4 -" where
the pellet would have to be placed in order to obtain the required spot size with a lens of reasonable
focal length.

One proising solution to the uniformity problem is the Induced Spatial Incoherence (ISI) con-
cept. - 21 In the conventional version'" - 1° of this technique, a broadband laser beam (bandwidth
AV >> l/ f,) is sliced into an array of small beamlets by an orthogonal pair of echelon structures.
which impose a different time delay at each step. (The idea is illustrated in two dimensions in Fig.
1.) If the delay increments , t, .. , - t, are chosen somewhat longer than the optical coherence
time tc - I/Ay, the beamlets become mutually incoherent. These beamlets are then overlapped onto
the target by a lens of focal length f. Each of them will independently focus to the same smoothly-
varying far-field diffraction profile of total width 2f X/D, provided that the initial width D, is small
in comparison to the aberration scalelength s0 in the incident laser beam. One has the option of
either centering all of the profiles at a single point, or (by slightly tilting adjacent echelon steps in
opposite directions) centering them equally around four nearby quadrature points in order to control
the shape and width of the composite profile.'" (Fig. 2) If the incident beam aberration also con-
tains some short scalelength components is ', < < D,). which might for example arise from hard
apertures or damage spots, the resulting energy will tend to focus well outside the main lobe ot the
far-field diffraction pattern. This component will therefore miss the target, and will be of little conse-
quence as long as it represents only a small fraction of the total energy
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Although the overlapped beamlets produce a complicated interference pattern at any one instant.
their mutual incoherence ensures that this pattern will evolve randomly in times ot order i It the
target responds hydrodynawmcally, in times ,>> r". it will effectively ignore this rapidly-
shifting structure, and respond only to the smooth time-averaged diffraction profile. For example. an
optical bandwidth A, - 30 cm -  easily achieved in Nd glass or KrF lasers) provides i= I p%.
whereas time scales for gross hydrodynamic motion of a large high gain pellet shell are typically - I
to 10 ns.

The idea of slicing the laser light into beamlets that are subsequently integrated at the target
plane also forms the basis of several other techniques for controlling irradiation profiles. In the
random-phase shift (RPS) technique developed by Kato and Miman.::-' the beam slicing is performed
by a transparent phase mask.:" which randomly imposes a fixed phase shift of either 0 or r on each of
the resulting beandets. The RPS technique has the advantage that it does not require a broadband
laser, and the phase mask may. in some existing laser facilities, be easier to utilize than ISI echelons
However, the fixed phase relationship among the beamlets (even with broadband light) ensures that
the interference pattern will remain stationary throughout the pulse duration. The lower spatial fre-
quency components of this pattern could not only create nonuniformities in the ablation pressure. hut
could also seed self focusing or other instabilities in the underdense plasma.

Several optical integrating techniques have been developed to produce a "'flat-topped" intensity
profile at the target. This can be accomplished by an array of prisms. "5 tilted mirrors.r' or lens sys-
tems' that combine the beamlets in their quasi-near fields. With these techniques one can avoid most
of the deleterious low spatial frequencies in the interference pattern if one also uses low F,"number
optics (i.e., large angles between the beamlets). Alternatively, one can achieve full ISI operation by
using a broadband laser and allowing the usual delay increments between the tilted echelon steps. as
illustrated in Fig. 3. All of these quasi near-field schemes have the drawback that Fresnel diffraction
of the sharp-edged beamlets will introduce gross nonuniformuties unless the Fresnel numbers are
> 100. This requires very low F/number optics, which would be unsuitable for a reactor design.' In
principle, both Fresnel ripples and short scalelength intensity aberrations can be at least partially aver-
aged out by offsetting the beamlets from one another at the target.2 However. it is not clear that this
averaging process could maintain adequate uniformity at the target if there were any significant
amount of aberration in the incident laser beam. The Fresnel number requirement ,ould he less
severe if high power apodization were applied to the edges of each step: one possible technique for
achieving this is currently under development.2' Thus. the quasi near-field version of ISI may become
a viable alternative that would be particularly useful for flat foil acceleration experiments. The
remaining issues would then be the limited depth of focus [approximately the spot size x (F/numbenl.
and the cost and complexity of the apodized steps.

This paper presents a theoretical description of the conventional (far-field) version of ISI; "flat
topped" 1Sl will be the subject of a later paper. Section 11 describes the 1St configuration in greater
detail, and calculates the ideal profiles in the single-focus and quadrature modes described above.
Section M] examines nonuniformities in the average intensity and ablation pressure due to residual
interference among the beamlets within finite averaging times. These results are generalized to a par-
tial ISI configuration, where beanlets at larger crossing angles are allowed to remain mutually
coherent throughout the pulse. Because the resulting interference pattern will contain only high spa-
tial frequencies, which can presumably be smoothed out by thermal diffusion, partial ISI may be one
possible way to accommodate a very large number of beamlets without significantly affecting the tem-
poral behavior of the pulse. Section IV examines the perturbing effects of laser aberration and beam-
let divergence on the 1SI profile. Section V shows numerical simulations comparing [SI results (aver-
aged over times r - 100 t, with those obtained by ordinary quasi near-field illumination and by the
RPS technique. In Sec. VI. we present some recent 2D numerical simulations indicating that IS!
operation suppresses filamentation in the underdense plasma. Finally. Sec. VII reviews these results,
along with those of recent target interaction experiments using ISI. and brietly discusses a promising
new technique for implementing ISI without using echelons.,
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II. ISI CONFIGURATION

Consider a collimated laser output beam propagating along the + 'Z direction. Its instantaneous
field amplitude at point x - ( .y) within the transverse plane z = ZL can be written in the form

EL (x.t) = bA(x) F(t) e - '. (2.1)

where the complex amplitudes Ax) and Fm describe the transverse spatial structure (e.g.. due to
beam aberration) and the temporal dependence. respectively, and b is a constant to be specified later.
For a broadband Q-switched pulse. where av >> I/tpuaF(t) is well approximated by a quasi-
stationary stochastic variable. Its correlation function Fu + t) F*( will exhibit a smooth, localized
t-dependence

Fu + t) F* (t) = F(t) 1 Y(t). (2.2a)
~where yqO) - I and

wh r y(t) - 0 for I t t > t, = I/av. 
(2.2b)

while the mean square amplitude IF (t) 12 describes the slow temporal behavior of the average
intensity over intervals -t,,, >> t,. For any quantity G(t) = G(F(t). the brackets G(t) denote an
ensemble average, which is equivalent to the time average

G(t) a Gt')

N over interval 7 in the limit where t, / r - 0 and r << tp,. The effects due to averaging each
4member of the ensemble over a finite number of coherence times will be considered in Sec. III.

An orthogonal pair of echelon structures, each having Ns >> 1 steps of width D1, slices the
beam into an Ns x Ns array of square beamlets. (If the incident beam is circular, then only irN2/4 of
those beamlets will contain any appreciable energy.) The nth beamlet. which is defined by the two-
dimensional vector n = (n, .n,,) with n, and n,. ranging over 1.2.. 5. is centered at position

= (x..y). where

1n = - (Ns + 1), D, Y -(Nv + 1) D. (2.3)

and delayed by time t.. The total field amplitude can thus be written as the two-dimensional summa-
tion

E (x,t) = J u . F( - t,) A(x) exp [i k 0, - (x -x,) - i j(t - t.) (2.4a)E x.'- 
D

= b E D, Y' " *A (x - x. -(V.")

", , -- x - x w)x - ,):(V . V.A) 0JF(t - t,)expjik$. (x - x., - ,,t tpJ. (2.4b)

where k = 2rX. u(x) is a -top hat" function equal to I for 1 x < 1/2 but zero otherwise, 0. -Wt.

and 0, are. respectively, the phase shifts and deflection angles imposed upon the beamlets by the
echelon steps. and ), means that the enclosed quantity is to be evaluated at x.. The second order
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expansion (2.4b) assumes that A () varies slowly across each beamlet. with the transverse gradient
terms (V _ ), and (V V _.-, describing the incident beam aberration. For the unaberrated terms.
we can specify the normalization

- 'A,- =1 (2.5)

without any loss of generality. No attempt is made nor should be made) to control the optical path
delays cr, to tolerances of order X. so the phase shifts p, are assumed to be mutually independent and
randomly distributed between 0 and 2ir. The angular deflections 0, are allowed up to 2Ns indepen-
dent adjustments, however, the most useful combinations appear to be either 6, = 0 for all n (single-
focus configuration) or , alternating among the values fo.d).(3,-4). -4.3).(-4.-4 for the quadra-
ture configuration.

A single lens of focal length f now superimposes the beamlets at a target plane located a short
distance z(<<f) in front of the focal point. The complex amplitude at this plane is found by substi-
tuting expression (2.4b) into the diffraction integral:3"

E(x~z~t) k d2 x' Es(X',t) exp i klx' -x12 klx'- (2.6a)
2r(f- z) f )

k b exp [i%(x.zzJ , kx. x X
E F(t - t) exp io' (Z) I

D /2 D 2 F
X ID2dd.X L 0 1 2  LA + (V,A)') + 2(V .V.A)n:

x e-p k Z) + i k I "l (2. 6b)
X xp -i x 7 (f -) " +  2f f -

where x (x.z.t) - k(f - z) -wt + k I x1-'/2f -z). and

'.(.) - on + kz Ix, I/2f (f --

is a random phase factor. In writing expression (2.6), we have ignored the propagation distances in

between the echelon steps and the focusing lens. This is justified as long as the target lies in the
quasi far-field of the beamlets; i.e., I z I must remain small in comparison to the beamlet focal depth:

Iz I < < 2Xf 2 /D (2.7)

Expression (2.6) then takes advantage of the fact that the far-field amplitudes are independent of I,,

except for small phase curvature terms k1n x l 2,22)0 The resulting phase differences
k(. - 1.,) 1 xI 2/2f2 between beamlets are negligible, so these terms can be removed from the summa-
tions and incorporated into x(x, z, t). Because !I s D1/2" 2 , the lI 2 term in the exponential of
(2.6b) can be ignored as long as condition (2.7) is satisfied. One then obt ins

D_ ex~xxzt]kx u x

E(x.z,t) = Dib exp(iX(x.:,t)l F(t - t,) exp k() - f -

4
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I I ik
+ ( V j.A). : V V sinc X (zIf) X. - -Z) 0. (2.8)

2 -lJ i L a

where

sinc (0) sin 0, sin 0,. (.9)

and

a - (f -z) X/DI = flX/D (2.10)

are, respectively, the functional form and effective width of the far-field diffraction pattern due to a
single unaberrated beamlet of width D1. The condition required for negligible separation of the beam-
lets due to their angular divergence is I x.I z /fa << 1, or in terms of the F/number f ID of the
total aperture D = NsD 1 ,

fID >> z/2a. (2.11)

The largest defocusing I z I that would be required in a spherical illumination geometry would be
the pellet radius =a; hence, condition (2.11) can be adequately satisfied by using high F/number
optics. Finally, we note that the far-field condition (2.7) can be rewritten as f ID1 > > i /2a. and
hence follows immediately from (2.11) because DIDI = Ns > I.

Returning to Eq. (2.8), we expand the sinc function up to second order in x. z If a, approximate
f - z f, and finally specify b - (81/cD-)1/2:

L 1 / kX. X x

E(x.z.t) = ca- expfix(x. z, )1 5 FUt - t') exp li',(z) -i -
ca- J n f/

X (A. + [i L(VA). - x An • V + L ( -(V V _A). + WX 'XA

k f_ x- - 2

2i 1 L (V.A) V IV1 sinc f -. (2.12)

Expression (2.12) contains all of the information needed to generate not only the ideal ISI profiles.
*but also the deviations arising from multi-beamlet interference, aberration, and beamlet divergence

effects.

To complete this section, we evaluate the ideal ISI profiles for the single-focus (i.e. complete
overlap) and quadrature configurations described previously. ISI generally requires all of the beam-
lets to be mutually incoherent; i.e., the correlation function defined in (2.2) must satisfy

Y(tn - t,) = 15.. (2.13)

In the scheme proposed here, this condition is achieved by choosing the incremental delays At to
satisfy

5



A.Xt > t,= 1/Av (2.14)

for all a. [A factor Atlt, = 1.5 will usually ")e sufficient to ensure that (2.13) is well satisfied if
A:= Av(FWHM).] The ideal profiles are then found from expression (2.12) by applying (2.13) to the
ensemble-averaged intensity I (x.z.t) w (c / 8 r) IE(x.z,t) 12, and discarding the aberration and
bearnlet divergence terms. For the complete overlap configuration (all B = 0) one obtains

-
0'°(x.t) = (la) P0 tw Sorx/a) (2.15)

where

PO(t) - lF(t - t,)1" A.12 (2.16)
I'

is the ensemble-average of the total power. and

2 sinO6, sin 0,.

S() = sinc (0) = O, 0, (2.17)

is the diffraction profile of a single beamlet. Approximately 82% of the incident energy is contained
in the central lobe of S(rx/a). as defined by -a s x. Y :5 a. The quadrature configuration
corresponds to 1 • & = +3(-3) for even (odd) values of n, and . = - (-4) for even (odd)
values of n,. This gives

I r -_6a v - ,6a

(t Z PS'(t)S .18)
a- aa

where a = f 3 is the focal spot offset. a, and P both assume the values * 1, and the quantities

= F(t - t.)J" A. Pt7(t) = 1 1 FU - t I A. etc. (2.19)
It l R M

refer to summations over the even (e) and odd (o ) steps. The optimum value of 6a /a depends on the
specific target application. For the broadest possible tiat-topped profile. as shown in Fig. 2b. the
optimum choice would be ba = 0.43a; to optimize the illumination uniformity and coupling in a
multi-beam spherical geometry, 8 9 the best choice centers around 6a = 0.22a.

In order to avoid significant temporal broadening effects due to the echelons, the total differen-
tial delay should remain short in comparison to the pulsewidth: i.e..

tm - tm, ' N At << t PuIse (2.20)

[The combination of this criterion and condition (2.14) thus places restrictions on the maximum
number of steps and the minimum optical bandwidth.] If (2.20) is applicable, then I F (t - t) 1

may be removed from the summations in (2.16) and (2.19), which are then subject to the normaliza-
tion condition (2.5); e.g., the total average power can be written as

P =(t) -= I F(t) (2.21)

In the quadrature configuration, the summations will satisfy the condition P; (t) + P, - (t

+ P' (t)' + P --t) - Po(t) thus, in the ideal case where these summations can be exactly bal-
anced, the profile becomes

_'Q'(x.t) = (I/a) P,(r) Q (rx/a.a/a). (2.22)

6



where

Q iT x la .6 aa ) ="S - . - ,

4 a

The S(r va) and Q rxla . 3a /a) profiles are compared in Fig. 2.

III. NONUNIFOLMITIES DUE TO RESIDUAL INTERFERENCE

The target responds to quantities, such as intensity or ablation pressure. averaged over some tin-
ite number rt of coherence times. Unlike ensemble averages, these finite time averages will retain
small nonuniformities due to residual interference among the beamlets. even if the beamlets are mutu.
ally incoherent. This section will examine those nonuniformities in the limit where perturbations due
to aberration and beamlet divergence are negligible. For simplicity, we consider only the complete
overlap configuration: the quadrature configuration will produce similar results for the cases ot
interest where 6a < 0.4a. The amplitude Eex.t) can then be approximated by the zeroth order term n
Eq. (2.12), with 16, = 0. Thus, the time-averaged intensity profile can be written as the multimode
expansion

I(x.t), m (cl8r) E (x.ti -

S Or- s ) Z m W , exp(iK-x). t3X)

where S (Tx/a) is the ideal diffraction envelope defined in Eq. (2.17). and

Pm(t) ,- A*,.. exp (i6'. - it('n ,F(t' - t.) Ft- W t. n) (32a
n T"

K, - k(x.-nm - x,)/f = mkD /f = 2iraim a, m_.K 13 2b

are. respectively, the complex amplitudes and spatial frequencies of the transverse modes- The m
amplitude P(t) , = F(t) K. is the time average of the total power, so (3.2a) represents a straighttor-
ward generalization of (2.16). All of the m * 0 modes, which describe the interterence pattern, are
statistically independent, except for the constraint P _. (t) = Pm(t) required to ensure that /x. 1
is real.

The actual target acceleration is determined by the average ablation pressure p ix.t. rather
than the intensity itself. In general, p(x.t), can be related to the instantaneous intensity lix.i by a
space-time convolution over the conduction zone between the ablation surface and absorption region.
This relationship will depend upon the detailed hydrodynamic behavior within that zone. and upon the

., optical wavelength, average irradiance level, and other parameters that also affect the absorption in
"V the underdense plasma.

To a good approximation, one can ignore the temporal convolution and relate the time-averaged
pressure p(x.t) , to a spatial convolution over the time-averaged intensity Ix.t . in the limit where r
satisfies the condition

tiliw > thdm > r >> t, .t11 (3.3)
where t, and t,, are. respectively, the ion-acoustic transit and thermal diffusion times across the con-

S.-duction zone. These times are given by the approximate expressions

-..

U ,,1
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, d c, t dIv:r,,.

where d is the effective width of the conduction zone. c, = 9.8 x 10 (ZIA) 2 [Te(eV)]"12 (with atomic
number .4 and charge state Z) is the ion-acoustic velocity in cm/sec, v, =4.2 x 107 [T,(eV)l" is the
electron thermal speed. r,, =34 x IO& [T,(eV)W In, In A is the electron-ion collision time3' in sec. n,
is the electron number density, and Ira is the Coulomb logarithm. For recent NRL planar-target
experiments using 527 nm. 2 ns pulses at intensities - 1o - 10" W/cm 2. 20 we estimate
T,- 500 eV .d -50 am. and n, I0': cm - " these parameters then yield t, - 320 ps and t,h - 360 ps.
Condition 13.3) is thus reasonably well-satisfied as long as the gross hydrodynamic response of the
target occurs on nanosecond time scales. A similar result is expected for reactor-sized targets operat-
ing at shorter optical wavelengths, longer pulsewidths, and higher intensities. For example. for a
possible high gain pellet driven by a few MJ. 1.4 Am laser with a 5-10 ns pulse at 5 x 101' W cm-. we

. estuate T, - "50 eV. d - 20 - 50 wn . and ,n. - 4x 1022 cm-': this gives t, - 100-250 ps and
tr, - 80-SOO ps.

The spatial convolution over Iix~au. is approximated here by using the heuristic "cloudy day"
model' to account for thermal smoothing effects within the conduction zone. If fi" (K.n . and
T K.a . are the transverse spatial Fourier transforms of pix.t . and / Ix.t .. respectively, then the

cloudy day model provides the simple result

ffiK.t) = C T ,K. . exp,- K dJ 3

where C is a constant. Taking the Fourier transform of Fq. (3. 1) and recalling definition 12 1'1. one
obtains

K = C'SK - K ,. ta .exp - K J). 13 51

where C' = C a. and

fi K) i dr S i " - exp -' K %)

I - K, /,AK iI - K. ,AK w or K, and K, :s - K

0 tor K, or K, > .1 K

is a triangular function whose effective width AK = 2r'a = kD,,f is the intermode spacing. ISee
Eq. (3.2b).1

We are primarily interested in focal spot diameters - ai that are large in comparison to the
Y width of the conduction zone, specifically the case where

AKd - 2T d/a < 1 (3.6)

Expression (3.5) is therefore well-approximated by

i K at) , C ', SA( - Km) P, () ,exp - K ,, d),

which transforms back to

px.t)= C'Sor x i Pmft) expi- Km d)exp(iKm x). (3.7)
aa' .2
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Comparing this result to expression (3. 1). we see that thermal smoothing tends to filter out the higher
spatial frequency modes arising from the interference, but has little effect on the diffraction envelope
S(Tx/a).

In the narrowband limit where t, exceeds the total time delay t.. - t in _U NV ., the beamlets
would remain mutually coherent. This limit corresponds to the RPS technique. -22.23 The amplitudes
Pa(t) , retain large randomly-phased contributions for all m #0. in addition to the m = 0 term
Po(t), = F (t) 2', hence the average intensity profile (3. 1) would consist of a stationary but ran-

dom multimode interference pattern modulated by the smooth S(Tx/a) envelope, as illustrated in Fig.
1. Similar considerations apply to the ablation pressure profile (3.7), except that the higher spatial
frequency components of the interference pattern are suppressed by the exp (- I KMI d) factors. This
filtering effect thus provides the primary basis for the RPS technique. In the following paragraphs.
we will derive approximate expressions for the RMS mode amplitude of the nonuniform time-
averaged intensity and ablation pressure. These expressions can be used to evaluate the standard
deviations of the interference nonuniformities for both the narrowband and broadband cases.

A. Complete ISI Operation

For complete ISI operation, Av must be broad enough to satisfy conditions (2.14) and (2.20).
thus ensuring mutual incoherence for all of the beamlets. The m * 0 components of Jm(t) , will
then decrease in relation to ,Jo(t)W, as t,.r decreases; i.e., expressions (3.1) and (3.7) will become
dominated by the S (rx/a) profile as the interference structure fades away. In the ensemble limit
where t/r - 0, expressions (3.2a), (2.13), and (2.5) yield

P (t) - Pa.(t), = 6.0, IF(t)1 (3.8)

- and both I(xt)7, and ,p (x,t) , [as given by the approximation (3.7)] reduce to the exact S(rxla) pro-
file. The double average in (3.8) allows an averaging over the slow nonrandom variation of Po()

in cases where T could become a non-negligible fraction of teuu.

The relative magnitude of the interference components of I (x,t) , and p (x. r), can be quanti-
fled by comparing the RMS mode amplitudes for m # 0 to that of the DC(m = 0) component.
Expressions (3.1) and (3.7) suggest the most appropriate definitions are (for m * 0)

a,(m) - I P.(t),,12 1,2/ P 21/_ (3.9a)

a.(m) - Pat(t)), 12/2 exp - I d)/' Po)(t) ) 1 '2 = at(m)exp( - I m .Kd) 13.9b)

where the brackets again denote an ensemble average, and [recalling (3.2b)1 AK = k DI/f = 2r/a.
The total RMS nonuniformities due to all of the statistically independent m # 0 modes are then
evaluated from the vector sums

r 7 112 7 1/2

at" am) . a - (3.1Oa.b)
- a 0 0t 0

A subsequent paragraph will show that P1 (t), 1/2 P),,; thus, expressions (3.10a.b) may be
regarded to a good approximation as the standard deviations of the spatial nonuniformities.
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From expression (3.2). we obtain

P.t),W V A.4..AA A, -. exp[(i(o'. - m - o 0'. + -.)J
a •'

X 
t '  dr' -t. dr F t ) F* (t' t, ,m)F* (t" -a) F (t" t, . )  (3.119

r r T

for all values of m. including in = 0. We now assume that the broadband light is sufficiently chaotic
to satisfy Gaussian statistics, thus allowing the factorization3 2

F (t' tj F* (t' tn m F* (t " - t,,) F (t"I - ftn , . n

F F(t' -t,) F* (t'-t, . F* (t " - t,) F(t"-trn,.

+ F (t' -ta) F* (t " - n,) F* (t' - t. , ) F (t " -t, -. i (3.12)

Temporal mode locking behavior due to "instantaneous" nonlinear effects, such as self-focusing or
harmonic conversion, will invariably have some effect on the statistics. However. the Gaussian
model is expected to remain a reasonable approximation as long as the number of temporal modes
tpui=.tc ( = At,,L.) remains large and the average nonlinear phase shift does not exceed 21r by a large
amount. S,:bstituting Eq. (3.12) into (3.11) and recalling expression (2.2a) and condition (2.20), one
obtains

p (r) = 2, JF(t')f2  - IF(t")["
SAriA*+. A*.,A,+, exp [i (€'. - '. - €'- + '., +.)I

~X [ (t= .M - tJ) -,*(t,. - t,,) + ',(t' t t, + t1,) -,*(t' -t" -t ,. + t.,. ) (3.13)

Equation (3.13) gives for the m = 0 term [recall the normalization (2.5)1

Po(t) ; = 5, Fut')1 " [FUt")1t r

X [ + I A,1 2 A0 1
2 I Y (y' t' - t. + t0)K] . (3.14)

The second term within the square brackets is nonvanishing only when t' - t" - t* + r., 0; hence.
if condition (2.20) is satisfied, one can approximate I F(t')', by I F(t") when evaluating the con-
tribution due to this term. In the limit where the total time delay Nj w satisfies additional criterion
Ns at < <r, condition t' - t" - t. + t., = 0 can be attained for all a and n' over most of the
(t,t + r) interval. The time integrals will then be approximately independent of a and n', so the sum-
mations can be evaluated immediately with the aid of Eq. (2.5). Thus,

. P o(t),2' " F (t)!: r + I F (t) 2 , I( ,,s t: T

where IF (t) 2 varies negligibly within times -t, < < r, and

" dt
YRMS "3 -y(t)" I (315)

L
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is a constant. In the opposite limit where r < < Ns: V, the second term of (3.14) becomes compar-
able to

F(t) z IA.] 4 JF(t) I ,/Nj,

which is again small as long as N > > I. Recalling expression (3.8), one thus obtains the expected
result

Po(t) ; I F(t) , = P)(t) , (3.16)

in all cases. The standard deviation in the case where r > Nj Al is approximately

"([) - 1/2 /' P0 (t) ' YRMS(t,/T) 1- <I/Ns, (3.17)

assuming that r is sufficiently short in comparison to tt that the slowly-varying quantity IF (t) 12
satisfies, < IFit) 122T 1/2 = I F(t) 12 ',,. In contrast to Eqs. (3.9) and (3.10), this quantity measures
temporal fluctuations of the entire profile amplitude, rather than spatial nonuniformities.

For rn * 0, expression (2.13) eliminates the -y(tn..-t.) terms in Eq. (3.13). and the random
phase factors o'. - o'. o'., + 0'., ensure that only those contributions with n' = n will add
coherently in the second set of terms. Equation (3.13) then reduces to the result

I p .(t)', 12, 1- F (t) 12 )2 , 'r2MS L , I A . 12 IA . ,. 12. (3.18)

Substituting expressions (3.18) and (3.16) into (3.9) and (3. 10), while again assuming , <<,r << tPuise,
one obtains the general results for m * 0

a,(M)/G, (M) = a/, = a, (M)/&P(M) = a/t,= YRMS (t/T)12 , (3.19)

where the factors

F1/2 F 1/2
-T IA.I'IA. ,.,Ij , - .1  (ml) (3.20a.b)

n 
Il

&p (m) = a(m)exp (- I m AKd), &P [ a 2(m)] (3.21a,b

describe the nonuniformities in the narrowband (RPS) limit. Expressions (3.19) and (3.21) show
explicitly that two independent mechanisms are combining to smooth the ablation pressure. The ther-
mal diffusion factors a, (m) and a, filter out the higher spatial frequencies, but have little effect on the

V longer wavelength modes unless A Kd - 1. The temporal factor -yRMS(t/')1/2 _ (t/r)"2. which also
smooths the irradiation, reduces the relative magnitude of the nonuniformities as the number of
independent random intensity contributions r/t, increases; it has the exact form that one would expect
from a random-walk process where the RMS nonuniformities increase as (r/t) 1 /, while the average
fluence increases as r/t,.

Useful approximations to (3.20) and (3.21) can be obtained using the normalization condition
(2.5), provided that the laser output beam is not too badly aberrated (e.g.. peak/valley spatial intensity
variations < 2:1). In the case of a nominally flat-topped circular beam of diameter D =Ns D1.one

%RI



can aproximate iA., 1- by the average value 4/rN] for I x s D /2. and zero elsewhere. For
Ns >> 1, the n summation in (3.20a) is therefore well-approximated by (4/rN-)-S, where S is the
area of the overlap region between two circles of diameter Ns whose centers are separated by distance
I ml * 0; thus. one obtains

&,(m) (8'' 2 /rN,) ir/2 - sin' (I ml/N,) -(Imi /Ns)(l-I ml /NI)'2 ] (3.22)

which is plotted in Fig. 4.

The standard deviation of the integrated intensity can be found immediately by combining (3. 19)
and (3.20ab) and using the normalization (2.5):

a ( - IA,. )12 = (1 - 4/rN,2 )1/2 < I (3.23a)

at : IRMS Q, /r)' / 2  (3.23b)

Expression (3.23a) shows that without temporal averaging, the RMS amplitude of the irradiance
nonuniformities remains nearly independent of the number of steps Ns.and is comparable to the DC
term. By increasing Ns, one merely shifts the spectrum to higher spatial frequencies, without signifi-
cantly affecting the total energy in the interference pattern.

The standard deviation of the ablation pressure can be approximated by substituting expression
(3.22) into Eqs. (3.21a,b) and (3.19); thus at, = YRMS (tc/r) "2 a,, where the 2D summation

= 2 N - sin IpI

- Jp (1 - i~l".)z/.] exp (-2AKdNs IL1) , (p a m/Ns s 1) (3.24)

is plotted vs AKdNs in Fig. 5. To illustrate these. results, we consider the parameters used for the ISI
simulations shown in Sec. V; i.e., X = 527 nm, f = 6 m, Ns = 16 steps across the FWHM of the
beam, stepwidth D, = 1 cm, and absorption-ablation distance d = 50 gm. One then finds
AKd - (k Di/f)d = l and AKdNs = 16, thus giving &, = 6.6% from Fig. 5 and o, < 0.66% for
r> lOOt.

For short wavelengths and high gain targets, where condition (3.6) is well-satisfied (e.g.,
AKd - 2-rd/a s 0.5), Fig. 5 shows that ap depends essentially on the single variable AKdNs. and fol-
lows the simple approximation &, < 2' 2 /AKd1Vs. Thus, for a wide range of conditions applicable to
high gain laser fusion, the standard deviation of the ablation pressure can be approximated by

Op < "YRMS (tc/ hr)h ", = t ap (3.25a)

&P < 2112/AKdNs = a/21/2 rdNs = (X/2 112 rd) (f ID) (3.25b)

where f ID - f/Ns D, is the overall F/number of the beam. As a numerical example, we choose
Ns - 60 steps/beam, a - 1.5 mm. d = 20 to 50 jam, coherence time r, = I ps. and averaging time
r - I as. (The 1.5 mm would allow pellets up to 2 mm radius with quadrature illumination, and the
20 to 50 jan is an appropriate range of absorption-ablation distances for 1/4 gm light.) The standard
deviations for the narrowband and broadband cases are then &, < II to 28% and ap < 0.4 to 0.9%.
respectively, and the total F/number is fINs D1 = a/Ns k = 100 for X = 0.25 gm.
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We close this discussion with a caveat concerning the slow residual fluctuations in the ideal
ablation pressure

p0(xn) a C' Po(t)), S(irx/a) (3.26)

due to the Po(t)), fluctuations. According to the discussion leading to expression (3.17), the standard
deviation at of P(t)), is the lesser of (t,/r) 2 or I/Ns , and can therefore amount to several percent.
even for r - I nsec. This poses no problem as long as one uses only a single laser beam. In a multi-
beam spherical illumination geometry, - '" however, it could lead to a small illumination imbalance,
unless all of the beams exhibit nearly the same random temporal behavior. One can avoid the prob-
lem by using a single master oscillator and balancing the net time delays within the different chains as
closely as possible (at least to within times << t,. rh). This will allow some interference to occur
among beamlets arising from different beams- however, the large angles (typically > 200) between
these beams insure that the resulting, transverse wavelengths will be on the order of microns, and
hence too short to cause any problem.

B. Partial ISI Operation

Complete ISI operation may be difficult to implement in a large aperture or highly aberrated
laser because the large number of incoherent beamlets that could be required would invalidate condi-
tion (2.20). The number of beamlets is determined by the step width D, , which depends upon the
target diameter < 2a = 2Xf IDI and the amount of aberration in the laser. For X < 1/2 Am, reason-
able focal lengths ( e.g. f s 30 m), and high gain targets of a few mm diameter, one would typically
need D, < 1 cm. With a 100 cm aperture per beam this would require N§ > 10 beamlets; it would
significantly affect the temporal behavior of the pulse, because for t, - 1 ps. Nj .t > Nj t,. - 10 ns.

One possible way to avoid this problem is a partial ISI scheme, in which the echelon step
sequence would be repeated after every N < Ns steps across the aperture, (e.g.. see Fig. 12).
Expression (2.13) would then be replaced by the more general condition

'Y(tn - t,) - 3".n , -VM. (3.27)

where (m¢ ,^) range over all positive and negative integers, including zero. Because the repeated
steps (m * 0) remain coherent, they create stationary interference patterns at the target. However. if
one chooses N sufficiently large. these patterns will have only high spatial frequencies of magnitude
NAK. 2" 2 NAK. 2NAK. etc, and can therefore be smoothed out by thermal diffusion. The relative
magnitude of the interference components of p (x.t ), can again be calculated from (3.9) and (3. 10).
using expression (3.27) and arguments similar to those presented before. Thus, (3.19) and (3.21)
generalize to

ap S MS &;(m) + , &,'(N m) . (3.28)
0 p

where the n summations again extend over all Nj bearrlets. The first term within the brackets
describes the residual incoherent contributions, and is identical to expression (3.19) and (3.21b). the
second describes the contribution of stationary interference patterns due to the repeating steps. If one
chose N = I (corresponding to the random phase case) then the second term would be identical to the
thermal smoothing factor (3.21b), and would become dominant for t, << r. If .V is chosen large
enough to satisfy the condition 2NAKd >> I. then the second term becomes negligible and (3.28)
reduces to the usual ISI result. Thus, for a large high gain pellet where condition (3.6) is well-
satisfied, the standard deviation of the ablation pressure would still be described by 3 .25a.bi The
ISI configuration recently proposed for the Sirius-M test reactor design"x provides an instructive
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numerical example. Here, each 1.2 m aperture (square) beam was divided into a total of N5 = 240
steps. which repeat after every 60 steps. With a stepwidth DI = 5 mm, focal length f = 30 m. and
wavelength X = 1/4 gm, this gives a = f X/Dr = 1.5 mm. Assuming (as before) that d = 20 to 50
,m and r/t, = 1000. we calculate . - 0.1 to 0.25% from (3.25a.b). The overall F/number of each
1.2 m beam is F/25.

IV. ABERRATION AND BEAMLET DIVERGENCE EFFECTS

This section examines perturbations of the ideal target profile due to laser aberration and beam-
let divergence. In order to separate out these effects, the analysis will be carried out in the ensemble-
average limit t/7 - 0, assuming complete ISI operation defined by conditions (2.14) and (2.20).
Because the resulting expressions contain no interference terms, and therefore involve only the long
scalelength functions such as S(rx/a) and its first and second-order gradients, they should apply
equally well to the average intensity or the ablation pressure as long as condition (3.6) is satisfied.

A. Completely Overlapped Beamlets

The complete overlap configuration is obtained by setting all f. - 0 in Eq. (2.12). Applying
conditions (2.13) and (2.21) to (2.12). and retaining only perturbation terms up to second order, one
finds the average intensity I (x.z) = (c/8 r) E(x.z) 1" :

I. JRX.Z); IA. 1 - Re(A * B.). - + + BOBk* V V S r

a a,
" -sin c 117 a  [R e (A * V V .,4 , + ( A( A * ),] . V .V . sinc Tx - '4 1

where

BM (f/ik)(V A) + (z/f)xA (4 2)

[Recall that ( ) evaluates the enclosed quantity at point x..] The slow temporal variation of
I (x.z.t) and P,)( (on a scale of t,) and the :-dependence of B, (z) have been suppressed here in

order to simplify the notation. Because A(x) varies slowly across the beamlet width D,. the 2D sum-
mations over n can be approximated by integrals. For example the normalization (2.51 can be
replaced by

i%"s

,, .,'2- A , (X) d -- 1 (4.3)
D 14

and integration by parts can be used to eliminate the last pair of terms in (4 1). i.e..

Re(A V V .4), - A-'(A* V V .4 -cc.)
- - ?

.d1.

-- .4)(V 40 ) - .4

Equation (4 1) therefore reduces to

I(%..Z) = [I -CZ) V - -C4:) V V 4 (44)

where P""%) = P, a-I S(r ra Iis the ideal target profile defined in Sec. 11. and
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) 5dXRe(A*B). Cx) BB* (4.5)
D " D

are the aberration coefficients. These coefficients can be rewritten in terms of the phase 4x) and
modulus I A (x) I of the amplitude A (x); i.e.,

S 2- Af(x) 2 Lf ft) + x] (4.6a)
D f

C--z 1111c IA(x)'12.fO(x)+ -- xl2 + [LV Jln IA 1]21, (4.6b)

D2 f k

where O(x) - (I/k) V , b(x) is the refraction angle acquired by the aberrated wavefront around point x,
and the squared vectors [ j2 in (4.6b) represent diadic products [ I [ I. Expressions (4.6a.b) can
be interpreted physically as intensity-weighted averages of the bracketed quantities over the laser
aperture.

It is useful to relate C,(z) and C2(z) to spatial moments33 of the coherent (but aberrated) focal
distribution lc(x, z)) that the laser would produce without ISI. As shown in the appendix, expression
(4.6a) is just the centroid of the coherent beam:

Cl(z) = IXCIZ - JIc(x,z))xdZx/JIc(x,z)d 2x (4.7)

This result can be readily understood in terms of geometrical optics. A ray passing through point x in
the laser aperture will intercept the target plane at point Xc(X) = f (x)+ xz If; expression (4.6a) then
averages all such contributions over the entire laser aperture. For the second moment [Xcxcl, which
is a measure of the RMS width of *Jc(x.z)), geometrical optics would average the diadic
f O(x) + xz If 12 over the laser aperture, thus giving the first set of terms in (4.6b). A more thorough

treatment including diffraction yields the complete expression (Appendix)

C,(z) = Ixcd, - I lc(x.z) ,xd2x/i Ic(x.z)'d 2x. (4.8)

although the geometrical optics contribution will usually remain dominant in saturated lasers, where
most of the aberration resides in the phase.

The aberrated ISI profile (4.4) can now be expressed in terms of the coherent moments:

I[I - Cl: V . + -[XcXcl. V V ] I '°(x) (4.9)

By dividing out the maximum value 1(0)(0)?, one can rewrite this in a dimensionless form suitable for
comparing the magnitudes of the perturbation terms; i.e..

I(xZ ))/(°()(0) , - S(rx/a) - rllxc Il/a r S'(rx/a)

+ 1"r(lxcxclf/a-): S"(rx/a). (4.10)

where

-S'a) a V,S(a). S" - VVS(a) (4.11)
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and V= - alao. The functions Sla,.0). S',ia,.O), and S",(a,,.O) are compared in Fig. 6. Equation
(4.9) can also be expressed in an alternative form by expanding 11"(x) around point IXcl. and, as
usual, retaining terms only up to second order in the gradients; i.e.,

l(XZ) = [1 + -LIAXcAXcL: : V V. .],IO(x - IxC :). (4.12)

where

1AXcAXcI: Ixcxc-I - xcI: Ixc.. (4.13)

Because 101(x)) is symmetric around x = 0, it is apparent that Ixcl also defines the centroid (and
hence the alignment) of the ISI profile. A nonzero value of Ixcdz would be of little consequence in a
flat foil experiment, where precise alignment is unnecessary. However, in a spherical geometry
where each laser beam must be properly centered onto the pellet, lXc j: should be treated as a pertur-
bation term [c.f. Eq. (4. 10)] if it cannot be entirely removed by the alignment system.

If the aberrations are spatially random, one can use a simple statistical model 34 to estimate both
the magnitudes and reproducibility of the perturbation amplitudes in Eq. (4.10). This model should
provide a reasonable description of perturbations arising from small-scale effects such as turbulence,
multiple surface nonuniformities, and residual lens aberrations, which contribute the lion's share of
the far-field broadening and are the most difficult to eliminate. Systematic lens aberrations, such as
astigmatism in angularly-multiplexed KrF systems,35 36 can be largely compensated within the laser.
Large-scale effects, such as thermal gradients, tend to cause gradual beam steering effects rather than
any significant broadening, and can be balanced out in real-time by an automatic alignment system.
For simplicity, the model will treat only phase aberration, which is the primary culprit responsible for
both beam steering and broadening effects in real lasers. The random phase aberration is character-
ized by an effective coherence width sa, < D (where D is the laser aperture), over which the RMS
phase shift is ir. The local refraction angle O(x). = (i/k) V I4W(x) can then be characterized using a
number

N,12 = (D/s,b)> 1 (4.14)

, of statistically-independent contributions 0, whose ensemble-average values are 0, = 0 (assuming that
the laser is properly aligned) and whose RMS amplitudes are

ORMS 0 10, 12 '2 = irlksb = X/2s,,,. (4.15)

From Eqs. (4.6a,b) (4.7) and (4.8), one thus obtains for the relevant moments

IV

l/ Ixcl = r.2  - , (4.16a,b): N , .- N; /.Ij~

where the subscript z has been dropped in order to simplify the notation.

Combining Eqs. (4.14)-(4.16a) and using the statistical conditions I#, I = 0 and
0*0, ,R MS 6, one obtains the ensemble-average I xc V = 0 and the RMS centroid

0 Xcl)RMs - 'IxcI1 21
" = fORMS/Nb =-fX/2D. (4 17)

i.e., the RMS misalignment due to small scale beam steering effects is approximately half the
diffraction-limited far-field width fX/D. (This expression probably represents an upper bound on the
misalignment because at least some of the contributions to it may be correctable by an automatic
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alignment system.) The RMS value of the S'(rx/a) coefficient in Eq. (4.10) thus reduces to the sim-
ple result

R, M 7rxcI)RMs/a 
= (r/2)fX/Da (4.18a)

where Eq. (2. 10) and the relationship Ns = DID, was used to obtain (4.18b). [Note that the criterion
specified in Sec. II requires Ns/N, = s,,/Dt> >1 (e.g. _ 3) to ensure the accuracy of the perturba-
tion expansion (4. 10). For the two large-scale ISI examples discussed in Sec. III, where we chose
Ns = 60 and 240, the respective values of R, are 2.5% and 0.6%. It should be noted that expression
(4.18a) is also applicable to conventional illumination schemes, where a would represent the diam-
eter of the quasi near-field profile at the target. Obviously, aberration-induced beam steering is an
issue that can affect all spherical illumination schemes. not just ISI.

The mean value of the second moment Ixcxc F will reduce to its diagonal elements
Ixc2-- lyc2 1 = II xc 21)/2 as long as the aberration is spatially-random. Combining Eqs. (4.14),
(4.15) and (4.16b), one obtains for the mean square diameter of the (non-ISI) focal spot

4k Ixc 121) = (2fOms)2 = (fX/s, ,) 2 = (fX/D)2N;. (4.19a)

which can be rewritten in the intuitively satisfying form

N.b 211 xc I "l)'/2/(fX /D)

- (RMS diameter) / ( diffraction - limited diameter ). (4.19b)

The effective magnitude- of the S"(0'x/a ) coefficient in Eq. (4.10) is then

R, a (r 2/8)4', I Xc 121,/a2

(r 2 /8)(N bDIIDY = (w/8W,,/N . (4.20)

which tends to broaden the ISI profile, as shown in Fig. 7. If the laser aberration , , were only a
few times diffraction limit, one could virtually eliminate this broadening term without using an exces-
sive number of steps; e.g., a choice of Ns/N,, > 10 would reduce R, to about 1% or less. However.
the high power multistage lasers envisioned as fusion drivers are likely to be heavily aberrated, with
typical values N, - 10 to 20 for each 30 cm of aperture. It is therefore expected that Ns/N,, will lie
in the range of 3 to 5, giving the respective values R, 15% to 5%. The function S"(rx/a) is
smooth and symmetric (Fig. 6), so a perturbation amplitude of this size will be tolerable as long as it
remains reproducible to within - 10%. Because of the spatial averaging process inherent in expres-
sions (4.6ab) one can expect a high degree of reproducibility.

A" The magnitude AR2 of the non-reproducible part of the perturbation amplitude can be estimated
from the RMS deviation

All .C! xc 1 - II xc 1 i)21 (4.21a)

- , -1 112)1 1 (4.21b)
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where expression (4.21b) follows from (4.16b) and the statistical independence of the 0, contribu-
tions. Under chaotic conditions, one can approximate I Oj - 10 12 2 by OMS, thereby obtaining
AlI xc I"1 = f OR2S/Nb. The resulting contribution to the perturbation amplitude is then

..R, - (r"/8)4A11 xc 1I1a2

(,r-/8)Nh/NV. (4.22)

according to (4.14), (4.19a) and (4.20). For the simulations discussed in Sec. V (Nab = 5 x diffrac-
tion limit and Ns = 16 steps across the FWHM of the beam) one expects AR, = 2.4%; however. A\R,
will be much smaller under the conditions applicable to a fusion driver. For example, a 20 x
diffraction-limited beam in a 30 cm aperture with 60 steps would have .AR, = 0.7%, a 1.2 m com-
pound aperture consisting of a 4 x 4 array of such beams (i.e.. N,,, = 80 and Ns = 240) would allow
only AR, = 0.17%.

B. Quadrature Configuration

The above perturbation treatment gives similar results for the effects of phase aberration and
beamlet divergence on the quadrature profile, at least for the cases of interest where the offset 6a
satisfies &z < 0.4a. Unlike the complete overlap case, however, the quadrature profile I'Q'x) may
be affected by laser intensity nonuniformities even if the usual perturbation terms in Eq. (4. 10) were
negligible. To examine this effect in greater detail, we rewrite expression (2.18), assume condition
(2.20), and recall the normalization Pj' + PO'- + P,-V + P~ = P),:

JQ)(x) -=-"- Q(,rx/a, 6a/a) + P" - P ' '

a2 8az

F, rS - ,av"~ -s Sv 'I,(.3
X K ba a S . a (4.23)

where Q(ix/a.&a/a) is the ideal quadrature defined in Eq. (2.23). We now expand the S functions
up to second order around S(rx/a) (valid for small &b/a) and combine the P,"' . P'5 summations
to finally obtain

S-'F(irx/a.6a/a)
a-

+ (ba/a) [CS',(ix/a ) + CGS' (rx/a)! + (ira/a) Cr S",(rx/a) . (4.24)

where

j- AI. (4.25a.b)

C 0)( + (e) -(A, (4.25c)

and the functions S'Orx/a), S"(rx/a) are defined in Eq. (4.11).
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One can null out most of the contribution to coefficients (4.25a-c) just by carefully aligning and
orienting the echelons within the beam; however, in practical lasers, where the saturated near-field
profile varies during the pulse duration (and may not even be completely reproducible from shot-to-
shot), the residual contributions should probably be treated as random variables. Each of them would
then have the approximate RMS value

CMS = (IN-) "2(AlA IRMS (l/2/"2 Ns)(AIA 2)RMSI( IAi (4.26)

where cA te), la Nr and (e A I o)Rms respectively describe the average and RMS deviation of the
intensity across the laser profile. For example, a ratio (A I A I ')RMS/( I A 12),,, = 0. 15 (corresponding
to - 2:1 peak/valley variation) would give CRMS - 0.1/Ns, which gives CRms = 0.7% for Ns = 16
and 0.2% for Ns = 60.

V. NUMERICAL SIMULATIONS OF ISI

The beam smoothing behavior of ISI can be clearly illustrated by numerical simulations of the
time-averaged intensity and ablation pressure profiles for a planar target. These simulations were car-
ried out for 0.527 um light by a 3D numerical code (CHAOS). which evaluates the diffraction
integral (2.6a) for an incident laser beam of arbitrary aberration. but ignores refraction and filamenta-
tion in the underdense plasma. Thermal smoothing effects are modelled by the heuristic -cloudy
day" approximation, as defined in expression (3.4), assuming in these examples an effective
absorption-ablation distance of d = 50 sm. For the simulations shown here, the chaotic temporal
behavior of the laser light is modelled by Gaussian statistics. The real and imaginary parts of the
complex amplitude F(t) are assigned independent random values with a Gaussian probability distribu-
tion, and these values fluctuate randomly from one coherence time to the next. Some of the simula-
tions were also carried out using other statistical distributions, such as random phase with constant
intensity; the results indicated that the ISI smoothing should be relatively insensitive to the statistics of
the incident light.

Figure 8 illustrates the problem encountered by the conventional illumination scheme. - -

where the target is simply placed in the quasi near-field of the focusing lens. In order to model a
saturated laser beam, the incident aberration was chosen to reside primarily in the phase: i.e.. the
-20 cm beam had a 5 x D.L. angular spectrum, but only -30% peak/valley intensity nonuniformi-
ties. This was accomplished by choosing the random complex amplitude A(x) to satisfy Gaussian
statistics, then attenuating the intensity nonuniformities by replacing the modulus IA x by
I A (x) 1/s. The overall laser profile was modelled by multiplying the resulting values of A(x by a

hypergaussian envelope lexp[-(2 1x I/D)' "2 . At the target, where the beam has focused down to
,.N z 0.5 mn, the irradiance nonuniformities are significantly worse because of the phase aberration in

the incident beam.' 0"' Large random nonuniformities are also very evident in the ablation pressure
profile, although thermal smoothing has removed the higher spatial frequency components.

Figure 9 models the original version of the RPS technique. -2.-  A pair or reflecting echelons
(Ns = 20, D , = 1 cm) have been inserted into the beam with their alternating steps tilted to produce a
quadrature profile at the target plane, which is now located in the far field of a 6 meter lens. (This
configuration is similar to the one used in recent NRL experiments with broadband 0.527 gm light.2 °)
In this case, however, the bandwidth AP is assumed to be sufficiently narrow that all 400 beamlets
remain mutually coherent, thus resulting in a complicated interference pattern that remains stationary
throughout the pulse. The thermal smoothing mechanism was unable to filter out the lower spatial
frequency components in the corresponding ablation pressure. The maximum peak/valley deviation
from the ensemble-averaged profile p(x) was found to be 37%. which is consistent with the RMS
value Er, = 6.6% calculated in Sec. III. Because the RPS technique allows a smaller stepwidth than
ISI, it would be possible to reduce this nonuniformity by increasing the number of steps. [E.g.. see
Eq. (3.25b).] However, it would also be necessary to either increase the laser aperture ND, or

%.
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decrease the focal length f in order to maintain the same spot size a. For example. a tenfold
decrease in &,, would require Ns = 200, which would in turn require F!3 optics.

Figures (10) and (11) show the time-average intensity and ablation pressure profiles for the com-
plete [SI case, in which Av is now chosen large enough to ensure mutually-incoherent beamlets.
Although the averaging interval -r = 100 t,. was chosen relatively short in this simulation, the quality
of the target profiles already shows dramatic improvement over previous results. The residual low
amplitude structure on the average intensity profile has been all but completely eliminated from the0 ablation pressure p(x) . The maximum (peaklvalley) deviation from the ideal (ensemble-averaged)
pressure p(x), was found to be 2.4%, which is consistent with the RMS value a,, = 0.66% calculated
in Sec. III. On the basis of Eq. (3.25a), we expect the maximum deviation to be < I % with averag-
ing times r > 500t,.

Figures 12 and 13 simulate the partial ISI case, where the time delay sequence now repeats after
the 10th step; thus steps I and 11. 2 and 12. etc remain coherent. The resulting increase in fine scale
interference structure (of wavelength f / 10D ---32 im) is clearly evident in the average intensity, and
would persist throughout the entire pulse. As a result of thermal smoothing, however, this structure
is effectively removed from the ablation pressure; e.g., the corresponding contribution to expression
(3.28) is proportional to exp ( -4irNd/a) exp (-20). The 3.9% peak/valley deviation found here
is somewhat larger than in the previous case, but that difference appears to be statistical.

VI. FILAMENTATION SIMULATIONS

The tilamentation instability is an important consideration in the use of ISI. Because the hydro-
dynamic response time for filamentation (typically - 100 ps) is much longer than the laser coherence
time (about 1 ps), it would appear that filamentation would be easily suppressed by ISI. In addition.
random density fluctuations driven by the constantly changing intensity structure would act to diffuse
any residual intense spots, and spoil filamentation further.

On the other hand, the smoothing effect of ISI is incomplete on the filamentation-hydrodynamic
. time scales: time-averaged intensity fluctuations of - 10% persist over this period. and may still

drive filamentation. Also. there- will be short moments during which the local intensity incident on
target will be much higher than average. [For Gaussian statistics, the intensity distribution is
(l/I )exp(-I/'i ) I Because filamentation is inherently a nonlinear optical instability, one may argue
that these momentary intensity peaks, rather than the time averaged fluctuations, dominate the fila-
mentation behavior. Thus the effect of ISI on light filamentation is not readily discernible from sim-
ple arguments.

A numerical code SELFOCT has been developed to simulate thermal and ponderomotive self
focusing in laser-plasma interactions, and particularly any filamentation of the light inhomogeneities
that may occur under ISI conditions. The code is time dependent and Cartesian in two spatial dimen-
sions. Light propagation is handled by the parabolic wave equation, while the plasma dynamics are
calculated by semi-linearized fluid equations combined with flux-limited heat flow.

A. Code Description

Laser propagation in SELFOCT is described by the paraxial WKB approximation to Maxwell's
wave equation

(c v a-/at-) E = I - iv,, /W)W2 E. (6 1)

IThis equation assumes a quasi-neutral plasma characterized by the local plasma frequency
W,= (n,(x.z.t)/nI'12 and electron-ion collision frequency v,, 0(n,ir.z.tuT Kr (.z. t . One can
separate the field variations into fast and slow space-time scales by writing
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E(x.z.t) = I(x.z.t)exp [if ko(z')dz' - iw . (6.2)

where ,i,(x.zg) is the slowly-varying complex amplitude, k0 = E:,'2(z)wlc. and E, = I -n,,,(:)/n,- is

the real part of the dielectric constant determined by the unperturbed steady-state density n,,z (. In
the paraxial WKB approximation. ,(x,z.t) and ko(z) remain slowly-varying over spatial scales
X -2r/ko(z). Substituting (6.2) into (6.1) and retaining only the first order variations of l(x. z. t) in z
and t. one obtains

'4,,

-- 2ikO v4 a j +  + +

--- (Er - E,,, +i ,j,. (6.3)
C-

Here. E, x.z.t) - 1 -ne(.:J)/nc and E,(x..,) = v, (x.z.tfn,(.t.Z.t/flo are. respectively, the
real and imaginary parts of the instantaneous plasma dielectric constant, and v,(z) = cE,!, z) is the

-.J group velocity. This equation can be simplified by applying the additional transformation

ko(O) L - I E, (z ') dz' 6

where E,(.) =ve,(z)neo(z)/ncc,, and rewriting all quantities in terms of the time I = t-z/vtz 1.

Redefining the axial coordinate as d7 = dz /E 2(z) and normalizing both spatial coordinates to the opt-
ical wavelength X = 2-c /w, one finally arrives at the parabolic equation in canonical form

(41ri8 /, + 2/axh)(x.z.,) = -41r [E(x.z.t,-EO(z) I'(x. Z.t) (6.5)

where E = E, + i E, is the complex dielectric constant.

Equation (6.5) is solved using a split-step fast Fourier transform (FFT) technique." To accom-
modate the FFT technique. the computational mesh must be periodic in r, and this affects the manner

in which the incident (z = 0) ISI laser field is numerically constructed. The ISI echelons separate the
broadband laser beam into a multitude of mutually-incoherent beamlets, which are then overlapped at
the target by the focusing lens. In the SELFOCT code, these overlapping beamlets are approximated
by incoherent plane waves propagating at slightly different angles 0, = x. If, where x, is given by
expression (2.3) and 10,, < < 1. The incident optical field is constructed on a calculational mesh in
Fourier k-space, with each plane wave assigned a transverse spatial frequency
k,., = ko(O) tan 8. - ko(0)0,,, where k0(O) = w1/c. Modes are exactly resolvable when I k,, I Xl,, is an
integer multiple of 2,", where Xl,, is the transverse width of the mesh; modes that lie between the
points on this k-space mesh are assigned to the nearest mesh point. Any modes outside of the resolv-
able frequency range (i.e., I k,, I Xl,, < r) are assigned to the k, = 0 (DC) mode. The complex ampli-
tude of each beamlet is assumed to satisfy Gaussian statistics, as in Sec. V, with independent random
fluctuations from one coherence time to the next.

The plasma response to the laser field is found by solving linearized fluid equations that include
the ponderomotive force term. Combining the continuity and momentum equations for the fluid

%-. +plasma, linearizing in the flow velocity, and ignoring the second-order term V In (n, V c,: one obtains
a driven ion-acoustic wave equation for the quantity L (x. z t) - In (n,):

S+ Via L = Vlc,- aV2 tj2 (6.6)
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where a m Ze"/4mm,w6o, c,2 = (ZT + Tmi, and v,, is a heuristic damping rate. Linearization is jus-
tified by the fact that the fractional density and electron temperature perturbations were found to be
typically < 10%, especially in the ISI runs where rapid fluctuations of the interference structure
tended to suppress large perturbations. In any case, most of the non-ISI simulations were carried out
using a steady-state treatment, which does not require linearization. [The use of the variable ln(n,)
instead of n,. preserves the correct ponderomotive nonlinear steady state behavior.] The ion tempera-
ture is assumed to be constant, ion-electron energy equilibration times are typically on the order of
nanoseconds in these plasmas.

The ion-acoustic propagation and heat flow are expected to occur primarily in the transverse (.)
direction. This stems from the following two considerations: (i) under the paraxial wave conditions
assumed here the intensity variations occur primarily along x. and (ii) because the optical propagation
speed (- c) is so much larger than c,. the ion-acoustic 'wake" will propagate nearly normal to the
optical axis :. Assuming then that all density disturbances propagate only along x. with relatively
small variations in the sound speed. one can Fourier-transform Eq. (6.6) to yield:

a2O- a k '-2 I+ qk' 26.7)

t-,2 at, Jc- (6.7

where t' m tc,/X k' a k, X and q = P,/kc, is the ratio of the imaginary/real frequency of the ion-

acoustic wave. (In this paper q is taken to be 1/2). The first term on the RIS of (6.7) is due to the
ponderomotive force, and the second term is the plasma pressure due to thermal gradients. These
source terms are assumed to be approximately constant over the time step used in the code (typically
a picosecond or so). The solution to (6.7) for a source constant from t0 ' to to' + tI' is:

Lk'.to' +tI') = exp (-gk't 1'/2) l/s[aL(k .to')/dto' + Iqk'L (k'. to') + qk'G] sin (KtI')

+ LLW. to')+G cos (xtI') } -G (6.8)
%p.,,

where K a I -q /4)1 2 k' and G m acg! * k .ro' -t ;'/2) , -c,(k .t,' -t '/_),c,,. This result is

inverse Fourier-transformed to yield the plasma density n, r.z.t.)' - r,') at the next time step.

The electron temperature is found by solving the relevant energy balance equation.

3.' n,3T1=- -, - H. 16.9)
2 t at a

where Q, is the electron thermal heat flux. H is the joule heating source given by H = K K, and

b (n,, T,) is the inverse bremmstrahlung absorption coefficient. Compression effects and electron-ion

energy coupling are much smaller than the terms included in (6.9), and are ignored. A conservative

flux-limited formalism is used for the heat flux. i.e..

SK, 3T, ax aT, (6.10)
Q , + f , n , T , V "a

where it, is the electron thermal conductivity of the plasma and f, is the flux limiter, which is set to

-. 0. 1 here in order to ensure that Q, does not exceed its classical limit. (For the simulations presented
here, the temperature gradients are small enough that the heat flux remains well below the classical
limit; thus the magnitude of f, has little effect on the results.) Equation (6.9) is solved by a
predictor-corrector method with periodic boundary conditions. This can cause problems. because the
net energy deposited by inverse bremmstrahlung cannot be lost to the plasma by either transverse heat
flow losses or conversion to axial plasma kinetic energy. Therefore, the average energy gain

4Hz.t) - Sdx Hoc.z. t)/X,,, is subtracted from the source term of (6.9) in order to keep the mean
temperature at a given axial distance constant.
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For steady-state problems, the calculation of the plasma density is simplified. The momentum
equation for constant sources , and T, reduces to V c,'n,) + n,a V 0 - = 0. yielding the solution

n(x,z) exp- , (6.11)
C (. I c (.C . .)

where C' is a constant. The temperature T, is found by iterative iolution of Eq. (6.9) with arbitrai-
time steps, performed until the solution converges upon itself. These separate solutions for T(t.)
and n, (x. z) are iterated alternately to obtain a convergent steady-state solution.

B. Results

The results presented here compare the filamentation behavior exhibited by ISI irradiation. con-
ventional (quasi near field) focusing. ' and the RPS technique.22 3 For comparison purposes. we start
with a simple well-defined laser-plasma model. First, the plasma is chosen to be homogeneous, the
constant coupling parameters throughout the interaction region simplifies the analysis. Second. we
ignore absorption in the plasma: absorption competes with filamentation. and can mask or eradicate
the effect. While absorption is important in realistic conditions, it unnecessarily complicates the
interpretation and comparison of the results. Both of these contraints are discarded later when we
look at a "real plasma".

The plasma model is composed of a homogeneous 250 Asm thick CH slab at n,, = 0.5n, and
T,o = 500eV, irradiated by a .25 Am wavelength laser at 2 x 10" W/cm-. Under these conditions.
perturbation theory3s predicts that both the thermal and ponderomotive self-focusing lengths (for the
fastest growing modes) are comparable (about 350X). Thus, the interplay between these two mechan-
isms should be well represented here. Note that this plasma model is selected primarily to produce a
very strong filamentation interaction; while useful for the purpose of comparison, it gives results that
are more pessimistic than those of actual laboratory plasmas, as we will see later.

Three different cases are investigated: 1Sl irradiance. RPS irradiance. and the standard quasi
near-field irradiance. Of these three, only the last is ambiguous in nature. We want the standard

irradiance case to represent a typical high-power laser. In practice, the structure of quasi near-field
illumination can vary greatly, depending upon the laser type, the power level, the optical engineering.
the attention paid to beam quality, etc. Here. we select a 3:1 peak-to-average as characterizing the
typical laser. The transverse mode spectrum of the incident plane waves is chosen to be flat for all
spatial frequencies between r/R,, and NsAK = k /2(F/number).

Two of these cases under scrutiny, the RPS and the standard laser case. require only the steady
state analysis because the intensity patterns remain stationary in time. First consider the standard
case, where the peak to average intensity value is 3:1 (the standard deviation is a, = .51). Figure 14
shows the intensity profile as a function of the propagation distance into the plasma. The first focal
point appears at z = 200X, and additional focal points appear with increasing frequency as the beam
propagates farther into the plasma. This focal distance is shorter than the predictions using either the
ponderomotive or thermal mechanisms alone; it is evidence that both mechanisms are acting together
to promote filamentation. The filaments that are created appear to attract one another, and converge
into a single large scale mode that has a high spatial frequency sub-structure. This behavior is caused
by the interaction of the thermal and ponderomotive forces: the ponderomotive force is primarily
responsible for the small initial filaments, since its fastest growing mode is approximately 4.OX in
width. Because thermal conduction spreads out temperature variations, the thermal filamentation
mechanism only acts over larger distances. The fastest growing resolvable thermal mode is the same
size as the simulation dimension, and this appears to be responsible for the large scale final mode.
Note that the transverse spatial frequency structure of the irradiance changes fundamentally as the fila-
ments are formed: after the first few filaments form. the structure is spread out over a much larger
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region in frequency space. At first. these higher spatial frequency structures are Locatl coherent and
V. form coherent filaments. Once these filaments interact with one another, however, the intensit,, pat-

tern is randomized as the high frequency structure becomes incoherent on a much smaller scale. The
resulting interference pattern seen in the final larze scale mode then close,, resembles the initial
structure in the RPS method. Thus. once ,ignificant filamentation occurs and the modes interact
(because of thermal self-focusing). further filamentation should be ,uppressed in accordance with RPS

"" theory. :-

In the RPS calculations, there is a moderate amount of suppression of tilamentation ,1 one uses
small F-number i<F 10) optics. Fig. IS illustrates the reduction or ti-lamentation that occurs as the
F number decreases. As a measure of the degree of filamentation. the largest intensits occurrtng n
the plasma is used. [Typical maximumuaveraize ,alues ot the intensit profile inciaent on the plasma
are as follows: (i) for the standard case l. ./ , ,= 3. it11 for RPS /,, /,,. = 4 to fh. iii for
ISI 1 " 4 to 5 and 1 , /.,, = I For F number >F lu. the maximum intensities
are. on average, about 25% or more larger than tor F number <F lo There ma, he letter 'uppres-
sion below f/2.5. but the parabolic wave approximation begins to break down there, and the ,imula-
tion results are not trustworthy. Also. the trend may be more pronounced at higher F number than
shown here. The runs with larger F number do not include the onger wavelength modes. Ahich are
lumped into the DC term. and thus the peak initial intensities are somewhat lower than mient otner-
wise be expected.

The 1SI simulation was run for 350 coherence times it '4' psec), and most of the results
presented here were averaged over this entire interval The most important result is the time aer-
aged intensity distribution shown in Fig. [6- This distribution exhibits the same development or high
spatial frequency structure found in the standard laser case. but without the development of the atten-
darn intensity peaks. The suppression of these peaks appears to be primarily due to the tact that the
ISI rradiance structure constantly shifts around, not allowing any single filamentary structure to per-
sist in the same spot.

However, the suppression is not complete on the shorter time scales. A t.pical instantaneous
" intensity distmbution (Fig. 17) shows that filamentary structures are still present. although at a more
* modest level than in the standard case. To compare. Fig 18 plots the values or / ... / I s propaga-

tion distance for the standard case. along with the maximum value of the time-aseralzed ISI ntenit,
i I j. and the time average of the maximum IS[ intensity /.,,, The ISI case is similar to the ,ton-
trol case, except for two significant differences. First. the buildup of the intensit, maximum takes
much longer with 1S1 (with the first intensity maximum occurring around + = . as oppseu to

200X, in the standard case). meaning that ISI has lengthened the selt-focusing distance Second.
the peak intensity with ISI is a factor of two lower than that found without ISI. This ma, he du it)
the smoothing effect in the time average, or it may be due to the smaller density channels made in the
IS1 process. (Note that although the averaged peak intensity in ISI is smaller than the standard case
the initial averaged peak intensity is larger.)

While ISI effectively suppresses filamentation of the time-averaged intensity. the behavior of the
instantaneous intensity distribution in the plasma is still cause for concern, as many plasma instabili-
ties have very short growth times - psi, and can therefore react to the peaks seen here For-
tunately, laser fusion pellets will not have densities - 0.5 ,n, or sub-kilovolt temperatures extending

r over hundreds of laser wavelengths. As an example of a more realistic plasma. we present a simula-
V., tion taken from a ihort-wavelength pellet interaction used in an earlier study " The target is a DT
e., pellet driven by a multi-megajoule laser. 26 nsec into the pulse. after a significant portion of plasma

volume has been created. The temperature and density profiles used for this example are plotted in
Fig 19 To a good approximation the radial convergence can be ignored, and the target treated as
planar. The major differences between this and the previous model are the inclusion ot absorption
(approximately 50% of the light is absorbed before n = 5n l. higher temperatures, and the large
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volume of plasma that is very underdense (and therefore more weakly coupled to the light). The
results, as plotted in Fig. 20. show that IS suppresses filamentation even on the short time scales.
and negates filamencation as a problem. On the other hand, the results with the standard irradiation
condition (2.25:1 peak to average) indicate that filamentation will be a nuisance without [SI (Fig. 21,);
here. a filament with a maximum intensity 9 times the incident average intensity has been formed.

VII. SUMMARY AND DISCUSSION

This paper has described the ISI technique in detail, and explored its potential application to
direct-drive laser fusion. We have denved the ideal ISI profiles in the complete overlap and quadra-
ture configurations [Eqs. (2.17) and (2.23). respectivelyl. and examined the perturbing factors. such
as multibeam interference, laser aberration. and plasma filamentation. which can introduce nonunitor-
mities or limit the controllability of those profiles.

Using both analytic theory and numerical simulations, we have shown that ablation pressure
nonumformities due to the rapidly fluctuating interference structure are smoothed by two independent
mechanisms. Thermal diffusion suppresses the higher spatial frequency components, in accordance
with the "'cloudy day" model. [E.g. see Eqs. i3.7) or ,3.21a.bi.1 If this mechansm acted alone (as
it would in the case of narrow bandwidth light) the standard deviation a, would be approxinmatei pro-
portional to AXdf Di [Expression (3.25b)1. which favors a large conduction zone width a and
small overall F number ! D Temporal averaging provides an additional smoothing factor
j, - [E - [F_(q. (3-19)1. which favors a wide laser bandwidth am, = I/v and a long pulse. The
standard deviation a, = &,a1 resulting from the combination of these two mechanisms is given
approximately by expressions t3 25a.b); this result shows that ablation pressure nonuniformities -
I % should be attainable under laser-plasma conditions of interest to ICF. In the partial ISI scheme.
there is a stationary component in the interference structure due to the coherent repeating steps.
Although this component cannot be smoothed by temporal averaging, its spatial frequencies are suffi-
ciently high that they are almost completely eliminated from the ablation pressure by the thermal
smoothing mechanism. Thus. partial ISI may be one way to avoid the excessive pulse lengthening
effects that would otherwise occur in large aperture systems where the number .V of independent
beamlets could exceed r, ,,,. If necessary, one could avoid the coherence between repeating steps
by segmenting or multiplexing the laser beam itself, dnving each segment by either separate oscilla-
tors or a different switched-out portion Ot a long -ngle oscillator pulse.

The theory has shown that with ISI the average intensity profile at the target remains relati'elt
insensitve to laser beam aberrations whose scale lengths s, are larger than the initial beamlet width
D In practice. this means that an incident beam aberrated to N ,,times its diffraction limit would
require .Ns 2 3, echelon steps to ensure adequate control over the target profile. The aberration
will tend to rtnsalign and broaden this profile somewhat fEqs. (4. 10) or 4. 12)1, but it will not intro-
duce any small-scale stuture In the usual case where V,. > > I and the aberration arises primarily
from random phase structure on the beam. the relative intensity perturbations due to misalignment and

[I, .: broadening are R, ~ Vs [Eq. 4 18)l and R. - V,.v [Eq. t4 20)1, respectively Most of the
broadening effect is controllable because it depends only upon spatial averages of the phase structure

. over the entire laser aperture: the uncontrollable component is .. - V,v [Eq. i4 22)1. Liser
intensity nonuniformities can also contrbute to perturbations of the ISI profile. especially in the qua-
drature configuration; however this effect also depends upon a spatial average over the aperture. and
is expected to be negligible if V > > 1. Our results show that it should be possible to control the ISI
intensity perturbations to within - I %. even with the degree of aberration expected in realistic fusion

'p. ,-. drivers.

Two dimensional simulations of optical propagation using the SELFOCT code have shown that
ISI significantly reduces filamentation in the underdense plasma. even in a non-absorbing, high den-
sity (0.5 ,r i. low temperature 00 eV) slab. where a normal laser beam would experience intense
filamentation. For low F number optics, the filamentation also appears to be inhibited hy the
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random-phase shift technique, - 2 1 but to a lesser degree than with ISI. In simulations at 0.25 Am.
including inverse bremsstrahlung, higher temperatures. and a more realistic plasma profile, the fila-
mentation is virtually eliminated with 1SI. (Fig. 20)

An important concern tor ISI is the question of how broad bandwidths or transient nonunitormi-
ties would affect certain laser-plasma instabilities (e.g. parametric instabilities), which can respond

* much faster than the hydrodynamics. Earlier experiments at 1.054 Am indicated that although broad
* laser bandwidth suppressed stimulated Brillouin scattering in the underdense plasma. as predicted

theoretically, the bandwidth appeared to enhance a critical region instability that produces fast elec-
trons.39 '  In the NRL experiments at 1 micron.' ° this effect was observed both with and without the
ISI echelons. The bandwidths used in these experiments were comparable to the expected ion-
acoustic frequency for the parametric decay instability, and the associated temporal mode beating may
have been seeding this critical region instability. More recently, -0 the experiments were repeated at
0.527 gm to determine whether the use of a shorter laser wavelength, which is strongly absorbed
before it reaches the critical region, would inhibit the fast electron generation. This indeed occurred:
in fact. the experiments showed that with the combination of ISI and shorter wavelength, the
enhanced hot electron generation observed earlier was replaced by a virtual quenching of hot electron
production. In summary. the NRL experiments are consistent with the following model: (1) The
smooth irradiance profile obtained with ISI echelons and broad bandwidth suppresses the effects of
hot spots, preventing for example the seeding of self focusing. (2) The combination of this smoothing
with the stabilizing effect of the bandwidth itself suppresses underdense parametric instabilities. (3)
The shorter laser wavelength prevents light from reaching the critical region, and thereby suppresses
broadband enhancement of hot electrons.

In the ISI and other related schemes discussed so far. the beam is divided up by optical arrays

placed at the output of the laser, where coating damage and optical complexity1'8 -6 may be possible

issues. This restriction on the location of the ISI arrays stems from self focusing effects in glass
lasers, and from the necessity of maintaining spatial coherence in any harmonic conversion crystals.
Near-field nonuniformities associated with an array of beamlets would seed self focusing if one
attempted to amplify those beamlets in a multistage glass laser.' In KrF lasers, this restriction is no
longer necessary because the amplifying medium is gaseous. intensities are low (typically < 10

-. MW/cm). and harmonic conversion is not required. The spatial incoherence could then be induced by
echelons4 2 or some alternative technique at a low energy stage within the laser, and optically-relayed
through the remaining stages of the amplifier chain. For example. one could use reflection from a
so-called plasma "spatial filter" to generate the spatially-incoherent light. 3 Although this technique is
capable of producing a smooth focal spot, 44 it is not clear whether there would be sufficient control
over the spatial coherence properties, or sufficiently rapid temporal averaging of the interference
structure to ensure that the target profile is controllable. Alternatively, one could use the scheme
shown in Fig. 22, in which a beam of statistically-homogeneous incoherent light is generated by
broadband amplified spontaneous emission (ASE) in a mirrorless or spatially multimode oscillator.2'
This beam traverses a variable-density absorber, whose spatial transmission function F(x) is the
desired target beam profile. It is then focused onto the entrance pupil of an optically-relayed KrF
laser chain. Because the entrance pupil lies at the Fourier transform plane of the absorber, the optical
information needed to reproduce F(x) at the target will be transported through the laser by a multitude
of small coherence zones, rather than any large whole beam structure; thus the coherence zones play
essentiUly the same role as the beamlets do in the conventional ISI. The target beam profile will be
insensitive to laser imperfections as long as the coherence zones remain small in comparison to the
transverse scale lengths of the phase aberration or amplifier gain nonuniformities. It will be insensi-
tive to amplifier saturation if the coherence time t,. remains short in comparison to the KrF relaxation
time (>lns). Theoretical analysis, along with a preliminary experimental test using a small KrF
oscillator-amplifier setup, has demonstrated that this technique is indeed capable of producing a
smooth, controllable focal profile, even under non-optimum conditions.-" Additional results on a
larger KrF system will be reported in later publications.
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APPENDIX

This Appendix calculates the moments of the target profile that the laser would produce without
the IS1 echelons. The coherent (but aberrated) amplitude in this plane is given by the diffraction
integral"°

k _ _ -_ _ _ _ _'

Ec(x.z.t) = 2df- E),t)eXP k x"-AI

Substituting expression (2.1) for EL (x', , one obtains the intensity

c4x.z) = (c/ 8T), Ec(x.z. t1

CCk2  F ik x,,) - I I

(21r)-(f -z ) -" ,_- -- z 1 2 ' X - x ,A2)

where Cc = bc/8r. From Eq. (2.5) and the definition b2 = 8r/cDj, one obtains

I xc(x.:),dx = IF 2- IAL (x')I = IF i (A3)Dr

The centroid of Ic(x. z) is defined by Eq. (4.7)

"XCI - I c(X.Z) xd2x/5 Ic(x.z) d x

r k :_ I I- 52~ - lt d2x ' d2x"A4(x')A*,x ') exp IC i fl Ik 1 'H! - ' x'-' (A4a)

L - j "exP i- x -x")x d zr A4b,
~L JL f-z

Performing the integration over x. which gives 65x'-x" . then integrating by parts over x. one
finally obtains

Ixcl. = 2 1A(x')1 2  L Vf I(X') + x'I. (A5)DI L k f]
which reduces to (4.6a) for z < <f. The second spatial moment is defined by

Ic XClC = Ic(xz))xxd2X/I Ic(x.z), d 2x (A6a)

k I d2X , Id 2.r , A(X,)A.(x,,) exp ikz (x - x '

21r(f-z)D , 2f(f- z)

x I - V' V'' iexp 'k (x'-' xd-r (A6bi_ -I k j ! L f -

Following steps similar to those used on (A4). one obtains expression (4.6b) for z < < .
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NARROW BANDWIDTH LIGHT
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LENS (F -,6 ml

.v% FOCAL POINT FLUENCE. ASSUMING ABLATION PRESSURE, ASSUMING
' THAT THE ECHELONS ARE ILLUMINATED THERMAL SMOOTHING WITH d = 50.,
i BY A MONOCHROMATIC LASER.

INTERFERENCE PAT TERN IS "FROZEN IN."

i:. Figure 9 -- Numerical simulation of the quadrature configuration (using reflecting echelons with ,Ns =20 ind
" D I = I cm) illuminated by narrowband 527 nm light. The resulting stationary interference pattern is partially

filtered out of the ablation pressure, but the lower spatial frequencies remain, giving a 37%y, peakivalley

deviation from the ensemble-averaged profile p (x)P.
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Figure 10 - Numerical simulation of ISI with broadband 527 nm light, showing the quadrature intensity and
ablation pressure profiles averaged over 100 coherence times. The peak/valley deviation from the ensemble-
averaged ablation pressure is now 2.4%.
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